“李默同学,你的提前毕业申请已经收到,经过系教务处研究,决定于本周三,周四在第5阶梯教室对你进行考试。望届时准时参加。”
看到邮箱里的信件,李默松了一口气,经过考试后,他就可以直接毕业了,提前参加研究项目了。
虽然李默很有信心通过考试,但还是来到图书馆的角落里把所有的科目再复习一遍。
“李默,你已经决定要提前毕业了吗?”
李默回过头,只见英飒飒眉头微颦的站在身后。
“是的,教务处已经通过了我的申请,这周就要进行考试。”李默神色自若的说。
英飒飒闻言眼角泛红,“那你是准备出国留学吗,我们还能再见面吗?”
李默神色微怔,眼角里噙着一丝笑意,“我已经准备报考吴教授的研究生了,会继续呆在燕大。”
“真的吗,那太好了。”英飒飒喜出望外,也许是意识到了自己的失态,她有点尴尬的说:“那你接着看书,我去帮他们送本书。”
目视步伐轻盈的英飒飒离开的背影,李默沉思了许久。
微信
周大勇:“安装工人已经进场,我和秋哥都在现场盯着。”
李默思索了一下,回复到:“谢谢,请安装工人务必按照图纸作业。”
周大勇:“收到!”
“有两位保镖在现场监工,自己也许可以放下心吧。”李默觉得自己有点势单力薄,俗话说的好:“浑身是铁,你能打几根钉子?”。
周三上午,第5阶梯教室.
李默准时来到教室,空荡荡的教室里只有一位带着试卷的教务处老师和一个临时被抓壮丁的研究生。
“李默师弟,我是吴教授的研究生,周明。”带着眼镜的男生腼腆的主动打招呼。
李默神情自如的笑了一下,说道:“这真是巧了,我正准备报考吴教授的研究生呢,也许以后你就是我的师兄了,请多多关照。”
周明谦虚的说:“你的大名,早就传遍了整个燕大,吴教授在我们面前没少夸赞你是难得一见的数学天才。”
“过奖,过奖。”
“咳,咳”旁边的教务处老师看到二人竟然拉起了家常,出言打断,“由于时间比较紧,我们这就开始考试吧,李默同学。”
“今天上午预计的是3门科目的考试,《数学分析》,《高等代数》和《微积分方程》。由于是提前考试,所以不按照正常的考试时间进行。”
“中午12点之前,你把3份完成的试卷交给我就行。”说着他就把3份试卷发了下来。
第一份试卷是《数学分析》,
1.叶形线x=2t-t2,y=2t2-t3,0≤t≤2,求此曲线所围的图形面积。
这也太简单了,李默稍加思索就得出了答案,他在试卷上唰唰写道:
|y=tx,t00.511.52x00.7510.750y00.37511.1250,面积A=∫0,1(2t-t^41022)(2-2t)dt=∫0,1(4t-6t^2+2t^3)dt=(2t^2-2t^3+t^42)|0,1=12.
2.u=(xy)^(1z)在(1,1,1)处的所有偏导数.
这题也难不倒他,不到2秒,李默就推导出了答案:
u=u(x,y,z)?u?x=[(xy)^5261(1z)](zx)=u(zx)?u?y=-[(xy)^(1z)](zy)=-u(zy)?u?z=-[(xy)^(1z)](1z2)ln(xy)=-u[ln(xy)]z2u=(xy)^(1z)在(1,41021,1)1653u=u(1,1,1)=1?u?x=1,?u?y=-1,?u?z=0
3.求u=ln(sin(xy))的全微分
1秒,只用了1秒,李默直接写下了答案。
du=(?u?x)dx+(?u?y)dy?u?x=y[cos(xy)][sin(xy)]?u?y=x[cos(xy)][sin(xy)]du=(ydx+xdy)[cos(xy)][sin(xy)]
..........................
.........................
仅仅用时30分钟,李默就做完了《数学分析》的试卷,如果不是最后那道开放性题目,他用了6中方法阐述,还可以更快一点。
下一张试卷是《高等代数》。
1.设V1与V2分别是齐次方程组x1+x2+.....+xn=0及x1=x2=.....=xn的解空间,求V1,V2并证P^n=V1+V2,其中P^n为数域p上的n维向量空间。