第0260章相位替换技能卡
以下是蒙提霍尔问题的一个著名的叙述,来自 craig f. whitaker 于1990年寄给《展示杂志》玛丽莲·沃斯·莎凡特专栏的信件:
“假设你正在参加一个游戏节目,你被要求在三扇门中选择一扇:其中一扇后面有一辆车。
其余两扇后面则是山羊。你选择了一道门,假设是一号门,然后知道门后面有什么的主持人,开启了另一扇后面有山羊的门,假设是三号门。
他然后问你:“你想选择二号门吗?”转换你的选择对你来说是一种优势吗?”
以上叙述是对steve selvin于1975年2月寄给american statistician杂志的叙述的改编版本。
如上文所述, 蒙提霍尔问题是游戏节目环节的一个引申;蒙提·霍尔在节目中的确会开启一扇错误的门,以增加刺激感,但不会容许参赛者更改他们的选择。
如蒙提·霍尔寄给selvin的信中所写:
“如果你上过我的节目的话,你会觉得游戏很快—选定以后就没有交换的机会。”
selvin在随后寄给american statistician的信件中-1975年8月首次使用了“蒙提霍尔问题”这个名称。
一个实质上完全相同的问题于1959年以“三囚犯问题”的形式出现在马丁·加德纳的《数学游戏》专栏中。
加德纳版本的选择过程叙述得十分明确,避免了《展示杂志》版本里隐含的前提条件。
这条问题的首次出现,可能是在1889年约瑟夫·贝特朗所著的 calcul des probabilités 一书中。
在这本书中,这条问题被称为“贝特朗箱子悖论”。
假设mueser 和 granberg 透过厘清细节, 以及对主持人的行为加上明确的介定, 提出了对这个问题的一种不含糊的陈述:
现在有三扇门,只有一扇门有汽车,其余两扇门的都是山羊。
汽车事前被放置于三扇门的其中一扇后面。
参赛者在三扇门中挑选一扇。他在挑选前并不知道任意一扇门后面是什麽。
主持人知道每扇门后面有什么。
如果参赛者挑了一扇有山羊的门,主持人必须挑另一扇有山羊的门。
如果参赛者挑了一扇有汽车的门,主持人等可能地在另外两扇有山羊的门中挑一扇门。
参赛者会被问是否保持他的原来选择,还是转而选择剩下的那一扇门。
转换选择可以增加参赛者拿到汽车的机会吗?
解法一:
问题的答案是可以:当参赛者转向另一扇门而不是维持原先的选择时,赢得汽车的机会将会加倍。
有三种可能的情况,全部都有相等的可能性(1/3):
参赛者挑山羊一号,主持人挑山羊二号。转换将赢得汽车。
参赛者挑山羊二号,主持人挑山羊一号。转换将赢得汽车。
“参赛者挑汽车,主持人挑羊一号。转换将失败”,和“参赛者挑汽车,主持人挑羊二号。转换将失败。”此情况的可能性为。
另一种解答是假设你永远都会转换选择,这时赢的唯一可能性就是选一扇没有车的门,因为主持人其后必定会开启另外一扇有山羊的门,消除了转换选择后选到另外一只羊的可能性。
因为门的总数是三扇,有山羊的门的总数是两扇,所以转换选择而赢得汽车的概率是2/3,与初次选择时选中有山羊的门的概率一样。